B.Math. (Hons.) Ist year First semestral exam January 5, 2022 Number Theory **Instructor : B.Sury** Answer ALL SIX questions. Be BRIEF!

Q 1.

(i) Prove $\sum_{k=0}^{n} k {n \choose k}^2 = {2n-1 \choose n-1} n$. (ii) Prove that among 10 consecutive positive integers, at least one is coprime to the product of the other 9.

Hint. For (i), either use counting or induction. For (ii), use the pigeon-hole principle.

OR

(a) Show that a positive integer n is a difference of two perfect squares if, and only if, it is NOT of the form 4k + 2.

(b) If n > 2, prove that there exists a prime p with n .Hint for (b). Look at n! - 1.

Q 2. Find all the primes p which divides a number of the form $a^2 - 7$. Hint. Use the quadratic reciprocity law.

OR

Show that there are infinitely many natural numbers n such that n! - 1 has at least two different prime factors.

OR

Suppose n > 1 is a Carmichael number (that is, $a^{n-1} \equiv 1 \mod n$ for all (a,n) = 1). Show that n is square-free, and (p-1)|(n-1) for each prime p|n.

Q 3. Let g be a multiplicative function and $f(n) = \sum_{d|n} g(d)$. Consider the $n \times n$ matrix A where $a_{ij} = f(GCD(i, j))$. Show that det $A = g(1)g(2) \cdots g(n)$. Hint: Look at the matrix B with $b_{ij} = \sqrt{g(j)}$ when j|i and $b_{ij} = 0$ if not.

Hint: Look at the matrix B with $b_{ij} = \sqrt{g(j)}$ when j|i and $b_{ij} = 0$ if not. Relate A to B.

OR

Prove that there are infinitely many primes of the form 6n + 1. Hint. If p_1, \dots, p_r are primes of the form 6k + 1, consider $(2p_1 \dots p_r)^2 + 3$ and use quadratic reciprocity law.

Q 4. Let p > 2 be a prime and suppose *a* is a primitive root mod *p*. Prove that either *a* or a + p is a primitive root mod p^n for all n > 1.

OR

Let p be a prime. Prove that the sequence $1^1, 2^2, 3^3, \cdots$ is periodic mod p with least period p(p-1).

Q 5. Prove: (i) $\sum_{d^2|n} \mu(d) = \mu(n)^2$. (ii) $\sigma(n)$ is odd if, and only if, $n = 2^k m^2$ with k = 0 or 1. **OR**

Consider the von Mangoldt function Λ defined as $\Lambda(p^r) = \log p$ if p is a prime and r > 0 and as 0 otherwise. Prove $\Lambda(n) = -\sum_{d|n} \mu(d) \log(d)$.

Q 6. If m, n are coprime positive integers, prove that

$$\sum_{i=1}^{[m/2]} [in/a] + \sum_{j=1}^{[n/2]} [jm/n] = [m/2][n/2].$$

OR

If p is an odd prime and (ab, p) = 1, show that the number of solutions (x, y) of the congruence $ax^2 + by^2 \equiv 1 \mod p$ is $p - \left(\frac{-ab}{p}\right)$.